If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x+5x^2=0
a = 5; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·5·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*5}=\frac{-64}{10} =-6+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*5}=\frac{0}{10} =0 $
| 3(x-3)=x-13 | | 4x-7=7x-8 | | 198-27x=0 | | 4(4k-14)=2(7k+3) | | 4(4k-14)=2 | | 11-y=y+15 | | 4.5(x-7)=3x-9 | | 3x-7=139 | | 3n/5+3=18 | | 7x+2=2x-18 | | r-42=-41 | | r-42=41 | | 96=64+8x | | 7-(5t+13)=-25 | | 3x-7(x-2)=13x | | 96=8+8x | | 7-(5t13)=-25 | | 2(5c-3)-1=8c+7 | | 102=8+8x | | 8=g+12 | | 8d-12d+6d=14 | | 4(2x-3)=2x-18 | | 8c-6c=(-12) | | x/248=88 | | 16=8.n | | 2x+50=6x-8 | | 16=n.2 | | n.4=8 | | 4.n=32 | | 7=4bb=3 | | 3y+6=5y+5 | | 12=4.n |